منابع مشابه
Pairwise non-commuting elements in finite metacyclic $2$-groups and some finite $p$-groups
Let $G$ be a finite group. A subset $X$ of $G$ is a set of pairwise non-commuting elements if any two distinct elements of $X$ do not commute. In this paper we determine the maximum size of these subsets in any finite non-abelian metacyclic $2$-group and in any finite non-abelian $p$-group with an abelian maximal subgroup.
متن کاملSome Propreties on Morphic Groups
The paper must have abstract. In this paper we continue the investigations on morphic groups. We also show that if a group is normaly uniserial and of order p3 with p prime it must be morphic and so give a negative answer to one of the questions of [4]. We caractrize the morphic groups of order p3 with p an odd prime. We also explore the set of subgroups of a morphic group which still morphic b...
متن کاملRESIDUALLY FINITE RATIONALLY p GROUPS
In this article we develop the theory of residually finite rationally p (RFRp) groups, where p is a prime. We first prove a series of results about the structure of finitely generated RFRp groups (either for a single prime p, or for infinitely many primes), including torsion-freeness, a Tits alternative, and a restriction on the BNS invariant. Furthermore, we show that many groups which occur n...
متن کاملNILPOTENT p-LOCAL FINITE GROUPS
In this paper we provide characterizations of p-nilpotency for fusion systems and p-local finite groups that are inspired by known result for finite groups. In particular, we generalize criteria by Atiyah, Brunetti, Frobenius, Quillen, Stammbach and Tate.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2015
ISSN: 0022-4049
DOI: 10.1016/j.jpaa.2015.02.035